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ABSTRACT 
 

In this paper, we obtain some oscillation criteria for the first order delay differential equation with x

 (t) + p(t) x(  (t)) 

= 0, t > t0. By applying these results, we also establish some integral conditions for oscillation of the higher order 

delay differential equations.  
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I. INTRODUCTION 

 

In this paper, oscillation criteria are established for first 

order delay differential Equations. Delay Differential 

Equations are one of the most powerful mathematical 

modelling tools & they arise naturally in various 

applications from the life sciences to engineering, 

physics, etc., the oscillatory behaviour of the solutions of 

first order linear Delay Differential Equations has been 

extensively studied in recent years.  

       

The qualitative properties of oscillation of the solution to 

the linear delay differential equations for P,     C {[t0, 

∞), R
+
}, R

+
 = [0, ∞)  

 

x

 (t) + p(t) x(  (t)) = 0, t > t0     -------------(1.1) 

And  x

(t) + p (t) x ( t -  ) = 0, t > t0---- (1.2)  

 

Where p(t) > 0 &  (t) is piecewise continuous and  (t) is 

a non – decreasing,  (t) < t for t > t0 and            = 

∞  

 

For (1.2) the function T defined by T(t) = t –  (t), t > 0, 

is increasing such that  

 

           = ∞ 

 

As is customary, a solution of (1.1) (or) (1.2) is said to 

be oscillatory if it has arbitrary large zeros.  

The following assumptions will be used throughout this 

paper, without further mention.  

 

Let the numbers K & L defined by  

K =       inf ∫     
 

    
 ds > 

 

 
 

L =        sup ∫     
 

    
 ds > 1 

Also L =        sup ∫     
 

    
 ds > 

    

 
  

If 0 < k < 
 

 
  

L > 1 – 
     √       

 
 and  

L > 
        

  
  

 

Where    is the smaller root of   =      

Set w(t) = 
        

    
                -------------------------(1.3) 

Also w(t) = exp  ∫     
 

    
w(s) ds --------------- (1.4)  

F(t) = 
    

    
            ------------------------------------ (1.5)  

 

LEMMA: 1.1 

 

Suppose that k>0 and Equation (1.1) has an eventually 

positive solution x(t) then k < 
 

 
 and   1 <              

   
 

<  2 where  1 is the smaller root and  2 the greater root 

of the equation   =    .   
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PROOF: 

                               Set w (t) = 
       

    
 

Let   =        inf w(t) 

From (1.4) we have sufficiently large„t‟ 

  > exp k  

Which is impossible if k > 
 

 
  

Since, this case   <          

  (1.1) has no eventually positive solution if k > 
 

 
  

 

Now,  

if 0 < k < 
 

 
 then  =      has roots  1 <  2  

(With equality  1 =  2 = e   k = 
 

 
 ) 

And   >       1 <   < 2  

   1        inf w (t) <  2 

 

LEMMA: 1.2 

 

Let 0 < k < 
 

 
 and x(t) be an eventually positive solution 

of Equation (1.1). Assume that there exists θ > 0 such 

that 

 

∫       
    

    
 > θ ∫       

 

 
 for all  (t) < u < t ---------(A) 

Then        sup w (t) <  
 

     √         
   ---------- (B) 

Where B is given by B = 
            

      
       --------------(C) 

And  1 is the smaller root of the equation  =       

 

PROOF:  

 

Let t > t0 > 1 be large enough so that  (t1) = t  

 

  = ∫       
  

 
 < ∫       

  

 
 , where 0 <   : k is 

arbitrary close to k  

 

Integrating (1.1) from t to t1, we get  

             x(t) = x(t1) + ∫     
  

 
 x( (s)) ds 

And F(s) = 
    

    
  

            x(t) = x(t1) + ∫     
  

 
  (s) x( (s)) ds 

Integrating (1.1) from  (s) to t for s <t1, we have  

           x[ (s)] = x(t) +  ∫     
 

    
 x( (u)) du  

                       = x(t) + ∫     
 

    
  (u) x(         

Combining last two equalities, we have 

 

x(t) = x(t1) + ∫     
  

 
  (s)  ( x(t) + ∫     

 

    
  (u) 

x(         )  ds ----- -----(1.6) 

 

Let 0 <   <  1 , then the function  

 (t) = x(t) e ∫     
  

  
 ds ------------------(1.7) is 

decreasing for large t > t0  

 

Since x(t) also decreasing  

From lemma (1.1)           
       

    
 >   

Since  (t) > 1 for t > t0 > 1  

 

Then 
           

    
 >   for all sufficiently large „t‟ 

0 = x
1
 (t) + F(t)  (t) x(      >  x

1
 (t) +   F(t) x(t)  

    (t) < 0 for sufficiently large t substituting into (1.6),  

we get for sufficiently large „t‟ the inequality 

 

x(t) > x(t1) +   x(t) + ∫     
  

 
 

(∫     
 

    
          ∫       

    

    )ds  

> x (t1) +  (x(t) +  (t)    (t)) 

∫     
  

 
(∫     

 

    
   ∫       

    

    )ds 

=x(t1) +  (x(t) +  (t) 

   (t))

    ∫       
    

  ∫     
  

 
(∫     

 

    
 

 ∫       
    

      )ds 

From (1.7)  

x(t) > x(t1) +   (x(t) +  (t) x(  (t)) 

∫     
  

 
[∫     

 

    
 

 ∫       
    

      ]ds      ---- ---------

(1.8)  

 

In view of (A) we obtain  

∫     
 

    
  

 ∫       
    

       > ∫     
 

    
    ∫       

 

    = 

 

  
 ( 

  ∫       
 

      ) 

  ∫     
  

 
(∫     

 

    
 

 ∫       
    

      ) ds >  

–  
 

  
 + 

 

  
 ∫     

  

 
 

  ∫       
 

     

= 
  

  
 + 

 

  
 ∫     

 

  
 

  ∫       
 

    
    ∫       

 

 ds 

 > 
  

  
 + 

 

  
     ∫     

  

 
     ∫       

 

 ds 

= 
  

  
 + 

    

     
 (       ∫       

  

 )  

= 
  

  
 + 

    

     
 (        ) 
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= 
  

  
 + 

    

     
 (        )  

From (1.8) yields  

x(t) > x(t1) +  x(t) + B
*
  (t) x(      --------------------(1.9)  

Where B
*
 = 

            

     
  

From (1.9), we have x(t) > d1      x( (t)) 

Where d1 = 
  

    
  

 

Observe that x(t1) > d1       x( (t1))  > d1 x(t)  

Since      > 1 for t > t0 > 1  

  (1.9)   x(t) > d2      x( (t))  

 

Where d2 = 
  

        
 

 

Using I derivative   procedure, then  

x(t) > dn+1  (t)  x( (t))  

Where dn+1 = 
  

        
, n=1, 2, 3, .... 

It is easy to see that the sequence {dn} is strictly 

increasing and bounced  

 

         dn = d exists and  Satisfies       d
2
 – (1 –  )d + 

B
*
 = 0  

 

  {dn} is strictly increasing it follows that  

 

    
      √            

 
 

 

Observe that for large t one has 

 

    

             
  > 

      √            

 
  

 

And since 0 <   < k is arbitrarily close to k, by letting 

 → 1, it leads to (B)  

The proof is complete.  

 

REMARK: 

 

Assume that      is continuously differentiable and that 

there exists   > 0  

 

F(         1
(t) > θ F(t) ------------------------(1.10) 

eventually for all t.  

 

Then it is easy to see that (1.10) implies (A) 

The function  

V(u) = ∫     
    

    
ds - θ∫     

 

 
ds  (t) < u < t 

satisfies the conditions v(t) = 0 

 

And v
1
(u) = - F( (u))  1

(u) + θ F(u) < 0 

If F(t) > 0 eventually for all „t‟ and  

        inf 
             

    
 = θ0 > 0 

 

Then θ can be any number satisfying 0 < θ < θ0  

 

LEMMA: 1.3  

Assume that (1.1) has an eventually positive solution 

x(t). Set 

 

B(t) = max ,
    

     
;           } 

 

Then         inf B(t) > 
 

     --------------------------(C) 

 

PROOF:  

 

Assume for the sake of contradiction that (C) is not true. 

Then there exist an increasing sequence {tn} with tn →∞ 

as n→∞ such that  

        B(tn) =         inf B(t) =   < 
 

    

 

For a given   ( , 
 

  ), there exists an integer N>0 such 

that 

        B(tn) < , n> N------------------------------------- (1.11) 

Since -  ln   < 
     

  
 = k,  

 

It follows from the definition of k that there exists an 

integer N1 > N such that 

 

∫       
 

    
 > -   ln , t > tN1     ----------------------- (1.12) 

 

Next we prove that 
    

       
 <   , t > tN1---------------- (1.13) 

In fact, if (1.13) is not true, then by (1.11) there exists an 

integer n1 > N1 and T with tn1 < T < tn1 + 1 such that 
    

       
 <   for t   [ (tn1), T) & 

    

       
 =   

 

By (1.1) we have  

 

∫       
  

    
 = ∫

     

       

  

    
 ds < ln  

       

    
 . B(T) < -  ln   
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Which contradicts (1.12) and so (1.13) holds.  

We have         inf 
       

    
 =         inf  w(t) > 

 

 
 >  2 

Which contradicts (lemma 1.1)  

The proof is complete 

LEMMA: 1.4 

 

If        sup ∫      
    

 
x (s-   ) ds < 0, for some i, 

and x(t) eventually positive solution of x

(t) + 

∑       
   x(t-   ) = 0, then for the same i,  

 

        inf 
         

    
 < ∞ ------------------------------- (1.14) 

 

PROOF:  

There exist a constant d > 0 and a sequence {tk} such 

that tk → ∞ as k→∞ and  

 

∫        
     

  
 > d,             k = 1,2 ... 

For all ξk  (tk, tk+ i) for every k such that  

∫        
  

  
 > d/2  and -------------------(1.15) 

∫        
     

  
 > d/2  

Then x

(t) + Pi(t) x(t –  i) < 0  -----------(1.16)  

Eventually 

 

Integrating (1.16) with [tk,   ] & [  , tk +  i]  

(1.16)  ∫        
  

  
 + ∫      

  

  
x(t –  i) dt < 0 

  x(t)    
  

 + ∫      
  

  
 x(t –  i) ds < 0 

 x( k) – x(tk) + ∫      
  

  
 x(s –  i) ds < 0 ---------- (1.17)  

And  

 

x(tk +  i) - x( k) + ∫      
       

  
 x(s –  i) ds < 0 ---- (1.18) 

 

By omitting first term in (1.17) & (1.18) by using the 

decreasing nature of x(t) and (1.15),  

We find, (1.17)    

– x(tk) + ∫      
  

  
 x(s –  i) ds < 0  

  – x(tk) + 
 

 
x( k –  i) < 0 

(1.18)   -x( k) + 
 

 
x( k ) < 0  

           (OR) 

(
        

     
 < (

 

 
)
 
 

 

This completes the proof 

 

THEOREM: 1.1  

 

Consider the Differential Equation (1.1) and let L<1, 

0<k<
 

 
 and there exists θ>0 such that (A) is satisfied. 

Assume that l > 
      

  
 – 

    √         

 
--------------- (D) 

Where    is the smaller root of the equation   =    and 

B is given by (C). Then all solutions of (1.1) oscillate. 

 

PROOF:  

Assume, for the sake of contradiction, that x(t) is 

eventually positive solution of (1.1)  

Let   be any number (
 

  
, 1)  

From Lemma (1.1),  there is a T1 > t0 such that 

 
       

    
 >    , t > T1 ----------------------------------- (1.19)  

    

       
 >   M , t > T1 ----------------------------------- (1.20) 

 

Where M =         inf 
    

       
  

Now let t > T1.  

Since the function g(s) = 
       

    
 is continuous,  

        = 1 <     

g(t) >      

 

There is a t
*
 (t)   (    , t) such that  

       

        
 =     

 

Dividing (1.1) by x(t)  

     

    
 + 

           

    
 =0 

 

Integrating from  (t) to t
*
(t) & use (1.19)  

  ∫
     

    

     

    
ds + ∫

           

    

     

    
 ds = 0 

  ∫     
     

    
(  1) ds < - ∫     

     

    

     

    
   

  (     ∫     
     

    
ds < - ∫

     

    

     

    
 ds 

  ∫     
     

    
ds < ( 

  

   
) ∫

     

    

     

    
     

= (
 

   
) ∫

     

    

     

    
    

=(
 

   
)              

    
  

=(
 

   
)           –    x(       

= (
 

   
)    ( 

       

        
)  
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= (
 

   
)    (     

   ∫     
     

    
ds = 

        

     
  ----------------------------- (1.21) 

 

Integrating (1.1) over [t
*
 (t), t] and using (1.20) and 

        >         if s < t yields 

 

∫     
 

     
ds < ( 

        

       
) - ( 

    

       
) 

= 
 

   
 - ( 

    

       
)  

 

=
 

   
 –  --------------------------------------------------(1.22)  

 

(1.21) + (1.22)   

∫     
     

    
ds + ∫     

 

     
ds < 

        

     
 + 

 

   
 –      

  ∫     
 

    
ds <  

          

     
 –     

Letting  

t→∞ ∫     
 

    
ds <  

          

     
 –    

l < 
          

     
 –    

Letting     

l <  
          

    
 –   

 

The last inequality, in view of Lemma (1.2) contradicts 

(D)  Hence Proved. 

 

THEOREM: (1.2) 

 

Suppose that ∫     
   

 
  >0 for t > t0 for some t0 > 0 

and  

∫     
 

  
    ( ∫     

   

 
  )dt = ∞ --------------------------

---------------------- (E) 

Then every solution of x(t) + p(t) x(t- ) = 0 oscillates. 

 

PROOF: 

Assume the contrary.  

Then we have an eventually positive solution x(t) of x

(t) 

+ p(t) x(t- ) = 0 

So, x(t) is eventually monotonically decreasing  

Let  = 
      

    
 

Clearly for large„t‟, function  (t) is non-negative and 

continuous and  

x(t) = x(t1) exp* ∫       
 

  
+ where x(t1) >0 for some 

t1>t0. 

Also  (t) satisfies the generated characteristic equation 

 (t) = p(t) exp*∫       
 

   
+ -------------------------- (1.23) 

We can easily show that  

e
rx

 > x + 
       

 
 for r>0         ---------------------- (1.24) 

Thus (1.23) becomes  

 (t) = p(t) exp *    
 

    
∫       

 

   
+ 

Using (1.24)   

 (t) > p(t) *
 

    
∫       

 

   
  

           

    
+ 

Where A(t) = ∫     
   

 
   

Then  

A(t)  (t) > p(t) ∫       
 

   
 + p(t)             

 (t)  ∫     
   

 
   > p(t) ∫       

 

   
+ p(t)    *  ∫  

 

   

     +  

 (t)  ∫     
   

 
   - p(t) ∫       

 

   
 > p(t)    *  ∫  

 

   

     + 

Then for N > T & integrating  

  ∫     
 

 
 ∫     

   

 
   - ∫     

 

 
 ∫       

 

   
 >  

∫     
 

 
    *  ∫       

   

 
+dt                

Consider  

∫     
 

 
 ∫       

 

   
dt > ∫ (∫           

   

 
)

   

 
ds  

(By interchange of order of integration) 

= ∫     
   

 
 ∫     

   

 
dt ds 

= ∫     
   

 
 ∫     

   

 
ds dt---------------------------- (1.25) 

Using (1.25) in (1.24)    

∫     
 

 
 ∫     

   

 
ds dt - ∫     

   

 ∫     
   

 
ds dt > 

∫     
 

 
    *  ∫       

   

 
+dt  

  ∫     
   

 
 ∫     

   

 
ds dt > ∫     

 

 
    

*  ∫       
   

 
+dt  

We have ∫      
    

 
ds < 1, i=1, 2 ...n 

  ∫     
 

   
 > ∫     

 

 
    *  ∫       

   

 
+dt  

  ∫
      

    

 

   
 > ∫     

 

 
    *  ∫       

   

 
+dt  

 -             
  > ∫     

 

 
    *  ∫       

   

 
+dt 

            -         > ∫     
 

 
    

*  ∫       
   

 
+dt  

    
      

    
 > ∫     

 

 
    *  ∫       

   

 
+dt-------- (1.26) 
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Given  ∫     
 

 
    *  ∫       

   

 
+dt = ∞        

by (E) 

  (1.25)    

      
      

    
     ---------------------------------- (1.27) 

Now (E) implies that there exist a sequence {tn} with tn 

→∞ as n→∞ such that  

 

∫       
    

  
 > 

 

 
 for all n 

Hence by lemma (1.4), we obtain  

   
   

   
      

    
    

 

This contradicts (1.26) & completes the proof. 

 

THEOREM: 1.3  

 

Assume that 0 <   < 
 

 
 and  

         {
   

        
  ∫   

 

    
    - > 

      

  
 -

 

  
   -

------------------- (F) 

Then all solutions of (1.1) oscillate. 

 

PROOF:  

 

Assume, for the sake of contradiction, that (1.1) has an 

eventually positive solution x(t).  

 

For given θ   (0.1) by lemma (1.3)  

 

∫     
 

    
   > θ    &  

       

    
 > θ    

  

For all sufficiently large t, and consequently for  (t) < s 

< t 
       

    
 = exp ∫   

    

    
   

       

    
 d   

       

    
 > exp (   ∫   

    

    
    )  >          exp    

    +    ∫   
    

    
    ) 

>          exp(   ∫   
    

    
    ) ---------------------------

-------------------- (1.28) 

 

Since ∫   
 

    
     < 1 

 

Integrating (1.1) from      to t & using (1.28)  

∫         
 

    
 + ∫               

 

    
 =0 

          
  + ∫               

 

    
 =0 

x(t) – x(       ∫               
 

    
 =0  

x(      - x(t) = ∫               
 

    
 =0  

>          x(      ∫     
 

    
 exp(   ∫   

    

    
    )  

x(        > x(t) +          x(       ∫     
 

    
 

exp(   ∫   
    

    
    ) 

1 > 
    

       
 +          x(       ∫     

 

    
 

exp(   ∫   
    

    
    ) ds     ------ (1.29) 

 

Let t be large enough so that  

 

∫     
 

    
ds > θ  

There exists t
*
   [        such that ∫     

  

    
 = θ    

Thus  

∫     
 

    
 exp(   ∫   

    

    
    ) ds >  

∫     
 

    
ds + ∫     

  

    
 [exp(   ∫   

    

    
    -1)]ds 

= ∫     
 

    
ds + ∫     

  

    
 

*,    ∫   
 

    
     ∫   

    

    
     -    +ds 

> ∫     
 

    
ds +      ∫     

  

    
exp(   ∫   

 

    
    )ds 

- θ   

= ∫     
 

    
ds + 

               

  
  

Substituting this into (1.28) we have  

 

1 > 
    

       
 +          *∫     

 

    
     

              

  
+  

         - 
               

  
 >          B(t) + min 

∫   
 

    
      

 

Taking superior limit as t→∞ & using lemma (1.4) 

 

         - 
               

  
 > 

                              ∫   
 

    
       

> 
 

  
         +    

   
   ,           ∫   

 

    
    - 

 

Since 0 < θ < 1is arbitrarily close to 1 

We let θ→1 
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Then    
   

   ,           ∫   
 

    
    - < 

                

  
 - 

 

  
  

= 
      

  
 - 

 

  
  

Which contradicts (F) and so the proof is complete. 

Hence Proved. 

 

II. ON OSCILLATION PROPERTIES OF DELAY 

DIFFERENTIAL EQUATIONS WITH A POSITIVE 

AND A NEGATIVE TERM 

 
Delay differential equations having forms 

   (t)+P (t) x (t- )-Q (t) x (t-  =0,    t   ------------ (2.1) 

 

And  [x(t)-R(t)x(t-   ' + P(t)x(t- )-Q(t)x(t-  =0,    t    

where P, Q, R     [  ,      ) and         

 

The following assumptions will be used this chapter 

without further mention 

Eq.(2.1) is oscillatory when  

     0 

 p>q>0                       -------------------------- (2.2) 

 q(  - )   

 (p-q) >(1/e)(1-q(      

 

Under conditions 

                            ∫  ̅
 

     
(s) ds > (1/e) 

                         ∫  ̅
 

     
(s) ds > 1 

 

LEMMA: 2.1 

 

Assume that x (t) is eventually positive solution of (2.1) 

holds. Then for n    eventually positive z(t) in  

z (t) = x (t) - ∫           
 

       
 ds 

satisfies  

z'(t) +  ̅(t) ∑   
 
    (t- ) z (t- )   0 ------------------ (2.3) 

eventually. 

 

PROOF: 

 

Assume that x (t) is eventually positive solution of (2.1) 

Then there exists a          such that x (t)>0 for  

     

            Set    =max {         

 

Since 

z (t) = x (t) - ∫           
 

       
 ds---------------- (2.4) 

Satisfies   z'(t)  0       , z (t) > 0    

We have 0< z (t)  x (t),        ------------------- (2.5) 

From (2.4)  

x (t) = z (t) - ∫           
 

       
 ds          

      

z(t)+  ∫              
 

       
+ ∫           

  

        

  d  ]d  =x(t),  

                                                                                                                           

       

 

Since      z'(t)   0    we have 

     x (t)  z(t)+z(    ) ∫     
 

       
 ds 

+∫      
 

       ∫                 
  

        
d  d   

            z(t) [1+ ∫     
 

       
 

ds]  ∫      
 

       ∫              
  

        

   d  d                   

   =z(t)[          (t)]+ ∫      
 

       ∫       
  

        

          d  d   

x(t)  =z(t) ∑   
 
    (t)+  ∫      

 

       ∫       
  

        

          d  d      for     +   

 

Repeating the above procedure for n-times, we have  

 

z(t) ∑   
 
   (t)+ ∫      

 

       
..........∫       

  

      
 –n   

x     -(n+1) )d    ...... d    x(t) 

                         (or) 

z(t) ∑   
 
   (t)   x(t) for     +n    ------------------(2.6) 

Since          z'(t) +    ̅̅ ̅̅ ̅̅  x (t-    = 0 

We have,  z'(t) +    ̅̅ ̅̅ ̅̅  ∑   
 
   (t-  ) z(t-     0 ,   

  +n  +   by considering (2.5) and (2.6) 

Hence proved 

 

LEMMA: 2.2  

 

Assume that all conditions of lemma (2.1) are held. 

Furthermore, assume that there exists an n  N such that 

 (n) > 1/e ---------- (2.7) 

(Or)  (n)  1/e,   (n) > 1-  
       √            

 
----  

 

(2.8) holds. Then every solution of (3) is oscillatory. 
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PROOF: 

 

Assume for contrary that x(t) is an eventually positive 

solution of (2.1) 

Then in the view of (2.7) and (2.8) z (t) in x (t) -

 ∫     
 

       
x(s- ) ds cannot be an eventually positive 

solution of (2.2) 

This contradiction completes the proof. 

 

LEMMA: 2.3 

 

Assume that x (t) is an eventually positive solution of 

(2.1) and 0  R(t)  1 hold. Then for n  N ,eventually 

positive z(t) in z(t)=x(t)-R(t)x(t-   ) is a solution of the 

following inequality  z'(t)+ p(t)∑   
 
    (t- ) z(t-  ) 0         

--------------(2.9) 

 

PROOF: 

 

Assume that x (t) is an eventually positive solution of 

(2.1) 

 

Then there exists                x (t) > 0            for 

t              

 

z (t)= x(t) -R(t) x(t-   ) satisfies  z'(t)   0, 0 < z(t) 

We have  

 

0 < z (t)  x (t-  ) = x (t),     t         --------------- (2.10) 

z (t) +R(t) x(t-   ) = x(t),      t          

 

We have    

 

z (t)+R(t)[z(t-   )+R(t-  ) x(t-  )]=x(t),       t         +  

and considering non-decreasing behaviour of z(t). 

 

z(t)[1+R(t)]+R(t)R(t-  )x(t-  )   x(t),                   t   

      +  

 

(i.e.)   z (t) ∑   
 
   (t) +    (t) x (t-       x (t),                 

t         +  

 

Assume  

 

z (t) ∑   
 
   (t) +     (t) x (t-(n+1)     x (t),        t   

      +   

 

(Or) 

 

z (t) ∑   
 
   (t)    x (t),  t         +       -------------------

-(2.11) for n  N 

 

Since       z‟ (t) +P (t) x (t- ) =0 

 

We have  

z'(t) +P (t)  ∑   
 
   (t- ) z (t-   ) 0,   t         +  + , n  

N from (2.10) 

 

Hence Proved 

 

THEOREM: 2.1 

 

Assume that conditions of lemma (2.1) are satisfied and 

Q(t) is a non-increasing function then if there exists n  N 

such that  

 

          ∫  ̅
 

   
 (s)∑                

     ds > 1/e. 

 

Then every solution of (2.1) is oscillatory. 

 

PROOF: 

Consider    (t) ={       
                                            

∫                 
 

     
       

 

                    (t)=1 

                    (t) = ∫       
 

     
 

  Q(t) (   ) 

                     (t) = ∫              
 

     
 

                                     ∫             
 

     
 

                                           

                       (t)              , i   for sufficiency 

large t 

 

Then            

                ∫  ̅
 

   
 (s)∑                

     

ds 

But     (n) > 1/e     (by (2.7)) 

(i.e.)            ∫  ̅
 

   
 (s)∑                

     ds > 

1/e 

Hence Proved 
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THEOREM: 2.2 

 

Assume that (2.2) holds. Then every solution of (2.1) is 

oscillatory.  

 

PROOF: 

 

First of all, we calculate    (t) functions 

 Clearly             (t) =1 

                        (t) = ∫    
 

     
 (s-  ) ds =q (   ) 

                        (t) = ∫    
 

     
 (s-  ) ds =          

                       (t)            ,   i   

CASE: 1      

                                                <1 

In this case, 

                ∫      
 

   
∑           

     ds 

                                =   (p-q) [
 

        
 ] 

 ( ) >1/e                                            (by 2.2) 

 

And all solutions of (2.1) are oscillatory by theorem 2.1 

 

CASE: 2         

                                      =1 

             In this case,  ( ) =  >1/e 

             Every solution of (2.1) is oscillatory  

Hence proved. 

 

THEOREM: 2.3  

Assume that 0 r (t) 1 and 0 p,    . If   p >1/e (1-r) 

--------------- (2.12) 

holds, Then every solution of [x(t)-r x(t-   )]'+p x(t- )=0 

is oscillatory. 

 

PROOF: 

 

We need to calculate    (t) functions 

                      (t) =     , t      + i  , i    

CASE: 1                 r < 1 

Thus  

                ∫  
 

   
∑      

     ds 

                                         =  
  

   
 

                                                      
  

   
 >1/e  (by 2.12) 

 

                       > 1/e   

Every solution of (2.12) is oscillatory 

CASE: 2         r=1 

                  Thus 

                         ( ) =  >1/e 

             Eq. (2.12) is oscillatory  

Hence proved 
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